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Abstract

We study tests ol hypothescs for regression parameters in the power

transformation model. In this model, a simple test consists of estimating

the correct scale and then performing the usual lincar model F-test in

this estimated scale.

Jo explore situations in which this test has the

correct level asymptotically as well as better power than Wald's test

or the likelihood ratio test.
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l. Introduction

We study tests of hypotheses for a regression parameter within the
context of the Box and Cox (1964) power transformation family. The model

is given by

(A .
\f ) = xiB + ¢ € 1=1, ...y N,
1
4] Y,
xiS n (vi wi)(Yz) , (wi},yz are scalars
Y ool i aso
= log Y if A =0

Bere o is the standard deviatieon and Eys veoo ey are independently
and identically distributed with mean zero and variance onc. We are

intere:ted in testing the hypothesis
2 : = .
(2) H:v,=0

In what follows, /\' will be an estimate of X , B* = (yl*.y;) will be
the least squares estimates in the estimated scale A‘ and é = (;|-;2)
will be the least squares estimates calculated in the true but unknown
scale A . A substantial literature now exists, although there has been

no real cmphasis on the hypothesis testing problem (2); see Andrews (1971),
Atkinson (1973), Hinkley (1975), Carroll (1980), Bickel and Doksum (1980),
and Carroll and Ruppert (1980) as a subset of this literature.

Of course, if the errors are normally distributed, the obvious method
for testing (2) is the likeclihood ratio test or LRT. Equivalent to this in
large samples is the Wild test WP which is based on Y;' divided by an
appropriate estimate of its staudard error. In practice what is most oftem
done is to sclect the scale A* and then do the usual analysis in this
scale, i.e., divide y;' by the nsual formula for its estimated standard
error. We denote such an analysis by CT , for conditional test based on
the estimated scale A", llinkley (1975) was apparently the first to

recogirize that these tests are not all equivalent.
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Examnplc iTJ;_ Consider the location wodel for log-normal data with

A=0, o =1 and normal errors following
log Yi a } 4 € .

2, % . .
Estimate 2 by the normal theory MLE. Then N'l (0w - ) 1is asymptotically

. . . . 2
normally distributed with mean zero and variance 1+ () + uz) /6 . Thus,

Nl/zlu*/o*] exceeds

in testing HO: w=0, the test (T which rvejects when
the normal  1-o/2 percentile always has a higher level than the desired

level «a , at least asymptotically, E]

However, in some cases the test CT 1is quite good. Bickel and
Doksum (1380) recogunized this.for the case of simple linecar regression

through the origen. We prescent an illustrative example,

Example ‘42. Consider log-normal simple lincar regression

with A =0, 0=1 :

log Yi = Bo-*8| Xi + €5 »

N xik" b s ko= 1,2,3,4

-1

=0, p, = |

v 2

In this important spccial case, it is possible to show by very detailed

N'lz(B:

distributed with mean zero and variance

likelihood calculations that - B‘) is asymptotically normally

-1
(&) sz(B,) = H.Blz B+ I’»lu:‘lz)‘?((n*aal2 + B‘“ (xlb-l-u3)) .

Of course, N‘/2(B' —'B.) has limit variance equal to one. The test

CT rejects Hoz B, = 0 whenever

n"zlsl'l/a* > t(a,N-2) ,

vhere t(a,N-2) is the two-sided t-percentile. The Wald test WY

T iy et et P i ag
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rejects when NI/Z[BII/O s(f, ) is large. What equation (3) says is that
asymptotically

(a) the test CT has the correct level, since 52(0) =1,

(b) the test CT has higher power than the WI or LRT.

The theory developed by Bickel and Doksum (1980) and outlined in
the next section suggests that when the maive test CI has the correct
level, it will also have better power than the WT or LRT. That such
a phenomenon is p&ssible is not too surprising in view of the fact that
when #=0 and o=! are known, the statistical curvature (Efron (1975))

for estimating A is Y02= 102/3

102: 1/8 is large!

when A=0 ; Efron suggests

The purpose of this article is to describe situations in which the
test CT has the correct level; this we do in Section 3. Basically, we
require only that the {wi} be independent of the {vi} , a situation
that obtains in many important models including simple lincar regression

and balanced factorial designs.




2. Small o Asymptotics

Assumc that thc.crrorn {ci) are symmetrically distributed. Bickel
and Doksum (1980) find major technical simplifications by letting o-+0

as N->eo |, Define

A= (xl'... x;)' peah A A
1 ] -' L ]
Q- Am'ad d =@y e d)

di = (X_z((vi -1 - v log (Vi)))

v.=1 + 2x. R
i i

-1 P '
N ey = N '(dd ~dPd ) »E >0,

N2Ga-p)so is

asymptotically normally distributed with mean =cro and covariance

From standard regression theory, we know that

(4) I=tim A0 .

N s

Bickel and Doksum show that N"z(B.- B)/o has asymptotic covariance

(5) Xl- f°+ lim N-'QQ'/oN .

N-»eo

Suppose that x; = (vi "i) with v scalar and v, a (1 xp) vector.
Define n = (0O ... 0 1) . Then asymptotically the test CT rejects
H: Y, " 0 if

°
N‘,zl nB’I/U% nzuvf)‘/z > t(n, N-p-1)
Equ.tions (4) and (S)ltcll us that CT has the correct level if
'
(6) n(f'-io)n =0 when Ho: Y, = 0 obtains,
Further, since QQ' is positive semidefinite, CT will have power at

least as large as WI' or LRT when (6) obtains. Another example
illustrates this.
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Example it3. We consider the small o asymptotics for the two group

analysis of covariancc model when A = 0 : ‘ !
- .+ 0 e, i=l, ..., 2N
log Yi u+op si + R X1 o e1 , 1i=1, ’

s. =1, s, =~1,5

) 2 3==l , sl.=-|, 52N=-l .

The parameter p is the treatment effect, and we arc interested in

testing

Let E be as above and sct

2N 2N,
lx, =0 » L X = 2N
) ]

28 2N 2
I s.X, = 2Na , z s.X.”= 2Nb
; i oL

2N
} x3 =28 . .
1 b §

We will show that the test CT has the correct level when the design
is balanced over the two treatments in the first two moments of {xi} ’
i.e., a=b=0 ., When A =0 1is known, N'/2(5-p)/o has asymptotic variance

(1'32)-| . Estimating ) by maximum likelihood, we find that

2, » . .
N'/ (p -p)/o has asymptolic variance

2

8" = (l-az)”I

2
+ (4E(1-2D)?)"! /(52 - 2ap B)b - B2a c\.

\\+ 2up(|-az) // .

Hence the test CT has the correct level if a=b =0 .
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4. The luevel of the test €1

In Example $F3 we sav that when A=0 and the covariates are
independent of the treatment assigument, then the test CT has the
correct level. A gencralization of this to the model (1) and hypothesis(2)
might then need (vi) to be independent of (wi} . In the following
we state conditions which formalize this notion and are at the same
time not restricted te the MLE A* as an estimate of A , Our
assumptions are stated in such a fashion as to allow the design {xi}

to also bhe randomly gencrated.

]

* 1/2

.1 . . . *
Aisunption 11;_ A is root-N consistent, i.e., N 'T(A-1) = Op(l) .

+

. 4 2.° . . . .
Assumption = 2, Nl/z(ﬁ-ﬁ) is asymptotically normally distributed.
. . * . *
Ai§umﬁfipq_ij_ There exizts o with o /o B AN 1

. F12 -
Assurpticn * 4. For the scquence (wi} .

-1

N g wi -—> 0

4 N

N | ZV'Z'—> -
i 1

almost surely if the {wi) are random.

Assumption "S

. Let FN(v,w,e) be the empirical distribution function
of {(xi,ci) = (vi,wi,ci)) . Suppose there exists distribution functions
FI'FZ and F3 such that

Fy (v,v,e) - F (V¥ (w)F(e)

Y

almost surely. Further, ((xi,ri)} are uniformly bounded.

L R L
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Theorem. Muké the Assumptions #I - #5. Then under Ho: Y, * 0 the

N‘/2§2/a and Nl/ZYé*/o* are cach asymptotically normally

statistics
distributed with mean zero and variance one. lence, the test CT has

the corrcct asymptotic level. Cj

Note that the theorem is stated ouly in terms of the design, as
long as we have appropriate estimates of A and o . The value of

A itself is not important, in contrast to Examples *tl~ ¥3,

, .. . #,
Some comment on the assumptions is in order. Assumption t is
. . *
crucial, but obviously X necd not be the normal theory MLE ; see
Hinkley (1975), Carroll (1980) and Bickel and Doksum (1980) for other

suggestions. Assumption #4 will hold if there is an intercept; otherwise

it scems necessary, as the work of Bickel and Doksum indicates for simple

. . » J.
regression through the origen. Assumptions :ﬁZ - *3 are hardly onerous.

The only restrictive assumption is #5. The boundedness is needed
only in a technical sense to make the proof fairly easy. Also, one of the
most common assumptions in regression is that the errors {ci} are
independent of the design {xi = (viwi)) . The heart of Assumption ¥;5

is thus the requirement that {vi} be unrelated to {wi} .

When is this requircment satisfied? It certainly holds for simple
linear regression under Assumption ¥4, either with or without an origen.
More importantly, it holds for balanced x x2 designs where the test
is for the treatment effect. Another important example in which Assump-
tion #5 will hold is general two-group analysis of covariance in which
the covariates are equally distributed across the treatments, as might

occur with random or blocked allocation.

It should also be noted that the CT test will be of the correct
level even when {wi} and Y, are vectors rather than scalars, as in
gencral factorial designs or many-group analysis of covariance. The

requirement remains that {wi) should be unrclated to (vi} .
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5. Conclusion

. *
We have shown that the rather naive test CT , which picks a scale X
and then performs the usual F-test, has the correct asymptotic level in

many important statistical problems. Generally speaking, this level

“obtains in balanced desipgns. When the test CT  has the correct asymptotic

level, it generally outperforms Wald's test and the likelihood ratio test.

6. Proof of the Theorem

. ) * ] . '“ 1.5
Write A = (xl oo Xy ) . By Assumption 4=~ 5 we have

v 0
(8) NI > ], - ( ) '
0 1

the converpence being with probability one in case of randomness. By (8)

/2

. L 2 .
and Assumptious b - 4, '(y2 -12)/0 is asymptotically normally

distributed with mean zero and variance one, so it suffices to show

that under H : Yy, =0 ,
o 2
* .
) ARV I
2 2
Because of (8), (9) will follow by proving
1 N A* b\
(10) N 1/2 ¥ w. (Y.( ). Y.(‘))/o o RN,
] it i
By a Taylor expansion, the left hand side of (10) becomes

N
172 0% - 3 (N
N (—O)N %“i"iyi 20,

. 4
so that by Assumption *1 we nced oply show

N
- L v
(11) N iZ'I v, 3y Y; >0 .



Now, under Ho: Y, T 0 there uxists a bounded fupction G with

3 Y.(A)

5% Vi = Glvypeoep)

so that (11) becomes

N
: -1 p
(12) N L w, Gy, o, 06) >0 .

But from Assumption "‘#5 the left side of (12) converges to
J w 6vy,0c) dF (W) dF, (V) dFy(e) = 0,

the last following from Assumption #r.

Pt ia, T
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